

> Banha University
> Faculty of Engineering - Shoubra Civil Engineering Department

REINFORCED CONCRETE 1-A

For $2^{\text {nd }}$ Year Civil - $1^{\text {st }}$ Term

Prof. Youssef Hashem, Prof. Ahmed Abd-alFattah, Assoc. Prof. Fouad Bakheet, Assoc. Prof. Taha Awad \& Assoc. Prof. Tarek Sayed

Previous Final Examinations

Benha University Faculty of Engineering- Shoubra Civil Engineering Department Seond Year Civil

Final $1^{\text {st }}$ Term Exam
Date: 11/1/ 2014
Reinforced Concrete 1 A
Duration : 3 hours
R.C. Design Aids يسمح فقط باستخدام كتاب جلاول ومنحنيات النصميم للخرسانة المسلحة 3 •

- Any missing data may be reasonably assumed according to ECP 2007 \& economical design rules.
- Answer all the following questions
- No. of questions:3
- Illustrate your answers with sketches when necessary.
- Total Mark: 60 Marks
- The exam. consists of one page

Question (1) [15 Marks] \{ILO's: a4, a6, a13, b2, b4, b15, c6, c10\}

Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following singly-reinforced sections $\left(\mathbf{b x t}=\mathbf{3 0 0 x} \mathbf{9 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{~ m m}\right)$ of a simply-supported beam $(\mathbf{L}=\mathbf{6} \mathbf{~ m})$:
a. R-Section $(\mathbf{a}=\mathbf{2} \mathbf{a m i n})$
b. R-Section $(\mathbf{a}=\mathbf{1 . 2} \mathbf{a b})$
c. T -Section $(\mathbf{a}=\mathbf{a} \mathbf{m i n})$
d. T-Section $\left(\mathbf{a}=\mathbf{a}_{\text {max }}\right)$

Question (2) [27 Marks] \{ILO's: a4, a6, a13, b2, b4, b15, c6, c10\}

For the overhanging beam $\left(\mathbf{b x t}=\mathbf{3 0 0} \mathbf{x 0 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 6 0} \mathbf{~ m m}\right)$ in the shown plan of a shed roof under the given slab service dead (D.L.) \& live (L.L.) loads and beam own weight $=\mathbf{5 N} \mathbf{~ k N}$ ', it is required to:
a. Draw the max. ultimate B.M.D., S.F.D. and T.M.D.
b. Design \& draw critical sections for max. negative B.M \& max. positive B.M.
c. Design \& draw critical sections for shear and torsion as R-sections

$$
\text { D.L. }=5.0 \mathrm{kN} / \mathrm{m}^{2}
$$

L.L. $=1.0 \mathrm{kN} / \mathrm{m}^{2}$

円سाणा
${ }_{+} \mathbf{1 m ~ t o ~}^{2 m}$

Question (3) [18 Marks] \{ILO's: a4, a6, a13, b2, b4, b15, c6, c10\}

a. Design and draw a circular column section $(\mathbf{1 . 0 \%} \leq \boldsymbol{\mu} \leq \mathbf{1 . 5 \%} \boldsymbol{\mathbf { ~ }} \mathbf{\text { d }} \mathbf{}$ = $\mathbf{5 0} \mathbf{~ m m})$ to carry a compression load of $\mathbf{4 0 0 0} \mathbf{~ k N}$ for the following eccentricity cases:
$-\mathrm{e}=\mathrm{e}_{\text {min }}$ (use spirals)

- $\mathrm{e}=0.5 \mathrm{~m}$ (use interaction diagrams)
b. Design and draw a rectangular column section ($\mathbf{b}=\mathbf{4 0 0} \mathbf{~ m m}, \mathbf{1 . 5} \% \leq \boldsymbol{\mu} \leq \mathbf{2 . 0} \%$, $\mathbf{d} \xlongequal{=} \mathbf{5 0} \mathbf{~ m m}$) to resist
 the following interaction diagrams:
- Interaction diagrams with uniform steel arrangement
- Interaction diagrams with equal top \& bottom steel $\mathrm{A}_{\mathrm{s}}=\mathrm{A}^{\prime}$ s
Benha University
Faculty of Engineering at Shoubra
Civil Engineering Department
Second Year Civil
- Answer all the following questions
- Illustrate your answers with sketches when necessary

Final $1^{\text {st }}$ Term Exam
Date: Tuesday 13/1/2015
Subject: Reinforced Concrete 1A Code: CVE 213 Duration: 3 hours

- No. of questions : 3
- Total Mark: 60 Marks

- Open Book Examination - Handbook of RC Design Aids is only allowed

- Take: $\mathrm{f}_{\mathrm{cu}}=\mathbf{3 0} \mathbf{~ M P a}, \mathrm{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathbf{~ M P a}$ for $\Phi \leq \mathbf{8 ~ m m}, \mathrm{f}_{\mathrm{y}}=\mathbf{3 6 0} \mathrm{MPa}$ for $\Phi \geq \mathbf{1 0} \mathbf{~ m m}, \Phi \leq \mathbf{2 5} \mathbf{~ m m}$.
- Any missing data may be reasonably assumed according to ECP 2012 \& economical design rules.

Question (1) [15 Marks] \{ILO's: a4, a6, a13, b2, b4, b15, c6, c10\}

Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following singly-reinforced sections ($\mathbf{b x t}=\mathbf{2 5 0 x} \mathbf{7 0 0} \mathbf{~ m m}, \mathbf{t}_{s}=\mathbf{1 2 0} \mathbf{m m}$) of a continuous beam (interior span $\mathbf{L}=\mathbf{7 m}$):
a. T-Section $\left(\mathbf{d}=\mathbf{d}_{\text {min }}\right)$
b. R-Section $\left(\mathbf{d}=\mathbf{d}_{\text {balanced }}\right)$
c. L-Section $\left(\mathbf{d}=\mathbf{d}_{\text {max }}\right)$
d. Trapezoidal section $\left(\mathbf{b}_{\text {top }}=\mathbf{3 b}, \mathbf{d}=\mathbf{d}_{\text {min }}\right)$

Question (2) [27 Marks]_\{ILO's: a4, a6, a13, b2, b4, b15, c6, c10\}

For the overhanging beam $\left(\mathbf{b x t}=\mathbf{3 5 0 x 8 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 8 0} \mathbf{~ m m}\right)$ in the shown plan of a shed roof under the given slab service dead (D.L.) \& live (L.L.) loads and beam own weight $=\mathbf{5 N} \mathbf{k N}$ ', it is required to:
c. Draw the max. ultimate B.M.D., S.F.D. and T.M.D.
d. Design \& draw critical sections for max. negative B.M \& max. positive B.M.
c. Design \& draw critical sections for shear and torsion as R-sections

Question (3) [18 Marks] \{ILO's: a4, a6, a13, b2, b4, b15, c6, c10\}

a- Calculate the ultimate compression load carried by a circular column section ($\mathbf{D}=\mathbf{8 0 0} \mathbf{~ m m}$) with uniform steel arrangement $\left(\mathbf{A}_{s}=\mathbf{1 6} \phi \mathbf{2 0}\right)$ for the following eccentricity cases:

- $\mathrm{e}=\mathrm{e}_{\text {min }}$ (use spirals with $\phi=8 \mathrm{~mm}, \mathrm{p}=50 \mathrm{~mm}$)
$-\mathrm{e}=0.25 \mathrm{D}$ (use interaction diagrams)
b. Design and draw a rectangular column section ($\mathbf{t}=\mathbf{3} \mathbf{b}, \mathbf{1 . 5} \% \leq \mu \leq \mathbf{2 . 0} \%, \mathbf{d}{ }^{`}=\mathbf{5 0} \mathbf{~ m m}$) to resist a compression force ($\left.\mathbf{P}_{\text {d.L }}=\mathbf{1 6 0 0} \mathbf{k N}, \mathbf{P}_{\mathbf{L} . \mathrm{L}}=\mathbf{1 2 0 0} \mathbf{k N}\right)$ and ($\left.\mathbf{M}_{\mathrm{D} . \mathrm{L}}=\mathbf{6 0 0} \mathbf{~ k N . m}, \mathbf{M}_{\mathbf{L} . \mathrm{L}}=\mathbf{4 0 0} \mathbf{~ k N . m}\right)$ using the following interaction diagrams:
- Interaction diagrams with uniform steel arrangement
- Interaction diagrams with equal top \& bottom steel $\mathrm{A}_{\mathrm{s}}=\mathrm{A}$'s

Board of Examiners: Professor Ahmed Abdel-Fattah Mahmoud
Associate Professor Fouad Bakheet Aboud
Assistant Professor Ahmed Saudi Abdel-Maula
Assistant Professor Tarek Sayed Mustafa

Final $1^{\text {st }}$ Term Exam
Date: Sunday 24/1/2016
Subject: Reinforced Concrete 1A
Code: CVE 213
Duration: 3 hours

- No. of questions : 3
- Total Mark: 60 Marks
- Answer all the following questions
- Illustrate your answers with sketches when necessary
- Open Book Examination - Handbook of RC Design Aids is only allowed
- Take: $f_{c u}=\mathbf{3 0} \mathbf{~ M P a , ~} f_{y}=\mathbf{3 6 0} \mathbf{~ M P a}$ for $\Phi \geq \mathbf{1 0} \mathbf{~ m m}, f_{y}=\mathbf{2 4 0} \mathrm{MPa}$ for $\Phi \leq \mathbf{8 m m} \boldsymbol{\Phi} \leq \mathbf{2 5} \mathbf{~ m m}$.
- Any missing data may be reasonably assumed according to ECP 2012 \& economical design rules.

Question (1) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following singly-reinforced sections (bxt $=\mathbf{3 0 0} \mathbf{~ m m} \mathbf{x} \mathbf{8 0 0} \mathbf{~ m m}, \mathbf{t}_{s}=\mathbf{1 2 0} \mathbf{m m}$):
a. T-Section $(\mathbf{a}=\mathbf{a} \mathbf{a m i n}$)
b. R-Section $(\mathbf{a}=1.1 \mathbf{a b a l a n c e d})$
c. L-Section $\left(\mathbf{a}=\mathbf{a}_{\text {max }}\right)$
d. Trapezoidal section $\left(\mathbf{b}_{\mathbf{t o p}}=\mathbf{3 b}, \mathbf{a}=\mathbf{a b a l a n c e d}\right)$

Question (2) [27 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

In the shown figure, the simple beam ABA supports a cantilever beam at B under the given service loads. a- For the cantilever beam $(\mathbf{s p a n}=\mathbf{2} \mathbf{~ m}, \mathbf{b x t}=\mathbf{2 5 0 \times 6 0 0} \mathbf{~ m m})$, it is required to:

- Draw the max. ultimate B.M.D. \& S.F.D.
- Design \& draw critical sections for bending \& shear as R-sections
b- For the simple beam A-B-A $\left(\mathbf{s p a n}=\mathbf{6} \mathbf{~ m}, \mathbf{b x t}=\mathbf{3 0 0 x} \mathbf{7 0 0} \mathbf{~ m m ~ \& ~} \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{~ m m}\right)$, it is required to:
- Draw the max. ultimate B.M.D., S.F.D. \& T.M.D.
- Design \& draw critical sections for bending as L-sec. \& for shear \& torsion as R-sec.

Question (3) [18 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

a. Design \& draw a circular column section under an ultimate compression load of $\mathbf{3 0 0 0} \mathbf{~ k N}$ for the following eccentricity cases:
$-\mathrm{e}=\mathrm{e}_{\text {min }}$ (use spirals)

- $\mathrm{e}=0.5 \mathrm{D}$ (use interaction diagrams)
b. Design \& draw a rectangular column section ($\mathbf{b}=\mathbf{4 0 0} \mathbf{~ m m}, \mathbf{1 \%} \leq \boldsymbol{\mu} \leq \mathbf{2 . 0} \boldsymbol{\%}, \mathbf{d}$ ` $\mathbf{5 0} \mathbf{~ m m}$) to resist a
 $600 \mathrm{kN} . \mathrm{m})$ using the following interaction diagrams:
- Interaction diagrams with uniform steel arrangement
- Interaction diagrams with equal top \& bottom steel $\mathrm{A}_{\mathrm{s}}=\mathrm{A}$'s

- Answer all the following questions
- Illustrate your answers with sketches when necessary

Final $1^{\text {st }}$ Term Exam
Date: Satday 31/12/2016
Subject: Reinforced Concrete 1A
Code: CVE 213
Duration: 3 hours

- No. of questions : 3
- Total Mark: 60 Marks
- Open Book Examination - Handbook of RC Design Aids is only allowed
- $f_{c u}=30 \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=360 \mathrm{MPa}$ for $\Phi \geq 10 \mathrm{~mm}, \mathrm{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathrm{MPa}$ for $\Phi=\mathbf{8} \mathbf{~ m m}, \Phi \leq 25 \mathrm{~mm}$
- Any missing data may be reasonably assumed according to ECP 2012 \& economical design rules.

Question (1) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following sections ($\mathbf{b x t}=\mathbf{4 0 0 x 6 0 0} \mathbf{m m}, \mathbf{t}_{s}=\mathbf{1 4 0} \mathrm{mm}$) of a cantliver beam of length $\mathbf{L}_{\mathbf{c}}=\mathbf{2 m}$:
a. T-Section $\left(\mathbf{A}_{s}=\mathbf{A}_{\mathbf{s} \text { min }}\right)$
b. R-Section ($\mathbf{C}=\mathbf{C}_{\text {max }}$)
c. L-Section $\left(\mathbf{d}=\mathbf{d}_{\text {min }}\right)$
d. R-Section ($\left.\mathbf{A s}_{\mathbf{s}}=\mathbf{4 \Phi 2 5}, \mathbf{A s}^{\mathbf{\prime}}=\mathbf{4 \Phi 1 6}\right)$

Question (2) [27 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

The shown overhanging beam (bxt $=\mathbf{3 0 0 x} 7 \mathbf{0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 5 0} \mathbf{~ m m}$) supports the slab service dead \& live loads of a double-cantilever roof (D.L. $=5 \mathrm{kN} / \mathrm{m}^{2}$, L.L. $=1 \mathrm{kN} / \mathrm{m}^{2}$) and beam own weight ($4.2 \mathrm{kN} / \mathrm{m}^{\prime}$).
For the overhanging beam, it is required to:
e. Draw the max. ultimate B.M.D.
f. Design \& draw critical sections for max. negative B.M \& max. positive B.M.
g. Draw the max. ultimate S.F.D. and T.M.D.
h. Design \& draw critical sections for shear and torsion as R-sections

Question (3) [18 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

a- Design and draw a Spiral circular column to resist ultimate load of $\mathrm{P}_{\mathrm{u}}=4000 \mathrm{kN}$ (let $\mu=1.0 \%$ as a start value)
b- Using interaction diagrams, find the ultimate capacity $\left(\mathrm{P}_{\mathrm{u}}\right)$ of the column cross section has the following properties: $\mathrm{b}=400 \mathrm{~mm}, \mathrm{t}=800 \mathrm{~mm}, \mathrm{~d}^{\prime}=50 \mathrm{~mm}$, top and bottom steel arrangement A_{s} $=\mathrm{A}_{\mathrm{s}}{ }^{`}=8 \Phi 25, \mathrm{e}=2000 \mathrm{~mm}$.
c- Design and draw a rectangular column cross section $\mathrm{b}=400 \mathrm{~mm}, \mathrm{~d}^{`}=50 \mathrm{~mm}$, (let $\mathrm{t}=1200 \mathrm{~mm}$ as start value) with uniform reinforcement arrangement ($1.0 \% \leq \mu \leq 2.0 \%$), using column interaction diagrams $\mathrm{P}_{\mathrm{u}(\mathrm{comp})}=5000 \mathrm{kN}, \mathrm{M}_{\mathrm{u}}=1000 \mathrm{kN} . \mathrm{m}$.
d- Design and draw a rectangular column section ($b=300 \mathrm{~mm}, \mathrm{t}=600 \mathrm{~mm}, \mathrm{~d}^{\prime}=50 \mathrm{~mm}$) to resist a tension force $T_{u}=400 \mathrm{kN} \&$ bending moment $\mathrm{M}_{\mathrm{u}}=300 \mathrm{~m} . \mathrm{kN}$.

- Answer all the following questions
- Illustrate your answers with sketches when necessary

Final $1^{\text {st }}$ Term Exam
Date: Satday 23/12/2017
Subject: Reinforced Concrete 1A
Code: CVE 213
Duration: 3 hours

- No. of questions : 4
- Total Mark: 60 Marks
- Open Book Examination - Handbook of RC Design Aids is only allowed
- $\mathrm{f}_{\mathrm{cu}}=30 \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=360 \mathrm{MPa}$ for $\Phi \geq 10 \mathrm{~mm}, \mathrm{f}_{\mathrm{y}}=240 \mathrm{MPa}$ for $\Phi=8 \mathbf{~ m m}, \Phi \leq 25 \mathrm{~mm}$
- Any missing data may be reasonably assumed according to ECP 2016.

Question (1) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

The shown overhanging beam ($\mathbf{b x t}=\mathbf{3 0 0 x 7 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{~ m m}$) supports the slab service dead \& live loads of a double-cantilever roof (D.L. $=4 \mathrm{kN} / \mathrm{m}^{2}$, L.L. $=1 \mathrm{kN} / \mathrm{m}^{2}$) and beam own weight ($4.35 \mathrm{kN} / \mathrm{m}^{\prime}$).

For the overhanging beam, it is required to:
a- Draw the max. ultimate B.M.D.
b- Design \& draw critical sections for max. negative B.M \& max. positive B.M.

Question (2) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

For the overhanging beam given in Question (1), it is required to:
a- Draw the max. ultimate S.F.D. and T.M.D.
b- Design \& draw critical sections for shear and torsion as R-sections

Question (3) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

a- Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following singly-reinforced sections ($\mathbf{b x t}=\mathbf{3 0 0 x 8 0 0} \mathbf{~ m m}, \mathbf{t}_{s}=\mathbf{1 4 0} \mathbf{m m}$) of a continuous beam (interior span $\mathbf{L}=\mathbf{6 m}$):
i. T-Section $\left(\mathbf{d}=\mathbf{d}_{\text {min }}\right) \quad$ ii. R-Section $\left(\mathbf{d}=\mathbf{d}_{\text {balanced }}\right) \quad$ iii. L-Section $\left(\mathbf{d}=\mathbf{d}_{\max }\right)$
b- Design \& draw a Spiral circular column to resist ultimate load of $\mathbf{P}_{\mathbf{u}}=\mathbf{3 6 0 0} \mathbf{k N}(\operatorname{let} \mu=1.0 \%)$

Question (4) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

e- Using interaction diagrams, design \& draw a Circular column section $\left(\mathbf{D}=\mathbf{7 0 0} \mathbf{~ m m}, \mathbf{d}^{`}=\mathbf{5 0} \mathbf{~ m m}\right)$ to resist a compression force $\mathbf{P}_{\mathbf{u}}=\mathbf{3 0 0 0} \mathbf{k N} \&$ bending moment $\mathbf{M}_{\mathbf{u}}=\mathbf{6 0 0} \mathbf{m} \cdot \mathbf{k N} .(\mathbf{1 . 0} \boldsymbol{\%} \leq \boldsymbol{\mu} \leq \mathbf{2 . 0} \boldsymbol{\%})$.
f- Design \& draw a rectangular section $\left(b=\mathbf{3 0 0} \mathbf{~ m m , ~} \mathbf{t}=\mathbf{6 0 0} \mathbf{~ m m}, \mathbf{d}^{`}=\mathbf{5 0} \mathbf{~ m m}\right)$ to resist a tension force $\mathbf{T}_{\mathbf{u}}=400 \mathrm{kN} \&$ bending moment $\mathrm{M}_{\mathbf{u}}=100 \mathrm{~m} . \mathrm{kN}$.
g- Design \& draw a rectangular column section $\left(b=\mathbf{4 0 0} \mathbf{~ m m , t}=\mathbf{1 0 0 0} \mathbf{~ m m , ~} \mathbf{d}^{`}=\mathbf{5 0} \mathbf{~ m m}\right)$ to resist a compression force $\mathbf{P}_{\mathbf{u}}=\mathbf{3 5 0} \mathbf{k N} \&$ bending moment $\mathbf{M}_{\mathbf{u}}=\mathbf{1 2 0 0} \mathbf{~ m} . \mathbf{k N}$.

- Answer all the following questions
- Illustrate your answers with sketches when necessary

Final $1^{\text {st }}$ Term Exam
Date: Satday 29/12/2018
Subject: Reinforced Concrete 1A
Code: CVE 213
Duration: 3 hours

- No. of questions: 4
- Total Mark: 60 Marks
- Open Book Examination - Handbook of RC Design Aids is only allowed
- $\mathrm{f}_{\mathrm{cu}}=30 \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=360 \mathrm{MPa}$ for $\Phi \geq 10 \mathrm{~mm}, \mathrm{f}_{\mathrm{y}}=240 \mathrm{MPa}$ for $\Phi=8 \mathbf{~ m m}, \Phi \leq 25 \mathrm{~mm}$
- Any missing data may be reasonably assumed according to ECP 2016.

Question (1) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

The shown continuous beam ($\mathbf{b x t}=\mathbf{3 0 0 x 7 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 4 0} \mathbf{~ m m}$) supports the slab service dead \& live loads of a double-cantilever roof (D.L. $=4 \mathrm{kN} / \mathrm{m}^{2}$, L.L. $=1 \mathrm{kN} / \mathrm{m}^{2}$) and beam own weight ($4.35 \mathrm{kN} / \mathrm{m}^{\prime}$).

For the projected continuous beam, it is required to:
a- Draw the max. ultimate B.M.D.
b- Design \& draw critical sections for max. negative B.M \& max. positive B.M.

Question (2) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

For the continuous beam given in Question (1), it is required to:
a- Draw the max. ultimate S.F.D. and T.M.D.
b- Design \& draw critical sections at supports for shear and torsion as R-sections
Question (3) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}
a- Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following singly-reinforced sections ($\mathbf{b x t}=\mathbf{2 5 0 x} \mathbf{6 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{m m}$) of a simply supported beam $(\mathbf{L}=\mathbf{5 m})$:
i. L-Section ($\mathbf{d}=\mathbf{d}_{\text {min }}$)
ii. R-Section ($\mathbf{d}=\mathbf{d}$ balanced $)$
iii. T-Section $\left(\mathbf{d}=\mathbf{d}_{\text {max }}\right)$
b- Design \& draw a square column to resist ultimate load of $\mathbf{P}_{\mathbf{u}}=\mathbf{5 4 0 0} \mathbf{k N}(\operatorname{let} \boldsymbol{\mu}=\mathbf{1 . 5 \%})$
Question (4) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}
a- Using interaction diagrams, find the ultimate capacity $\left(\mathbf{P}_{\mathbf{u}}\right)$ of the following column section: $\mathbf{b}=\mathbf{4 0 0}$ $\mathbf{m m}, \mathrm{t}=\mathbf{8 0 0} \mathbf{~ m m}, \mathrm{d}^{`}=\mathbf{5 0} \mathbf{~ m m}$, top and bottom steel arrangement $A_{s}=A_{s}{ }^{`}=8 \Phi \mathbf{2 5}, \mathrm{e}=\mathbf{4 0 0} \mathbf{~ m m}$.
b- Design \& draw a rectangular section $\left(\mathbf{b}=\mathbf{3 0 0} \mathbf{~ m m}, \mathbf{t}=\mathbf{1 2 0 0} \mathbf{~ m m}, \mathbf{d}^{`}=\mathbf{5 0} \mathbf{~ m m}\right)$ to resist a tension force $\mathbf{T}_{\mathbf{u}}=\mathbf{3 5 0} \mathbf{k N} \&$ bending moment $\mathrm{M}_{\mathbf{u}}=1000 \mathrm{~m} . \mathrm{kN}$.
c- Using column interaction diagrams, design \& draw a Circular column section to resist a compression force $\mathbf{P}_{\mathrm{u}}=\mathbf{5 0 0 0} \mathbf{k N} \&$ bending moment $\mathrm{M}_{\mathrm{u}}=\mathbf{5 0 0} \mathbf{~ m} . \mathrm{kN}$. $\left(\mathrm{D}=\mathbf{6 0 0} \mathbf{~ m m}, \mathrm{d}^{\prime}=\mathbf{5 0} \mathbf{~ m m}, \mathbf{1 . 0} \% \leq \boldsymbol{\mu} \leq \mathbf{2 . 0} \%\right.$).

Benha University
 Faculty of Engineering at Shoubra Civil Engineering Department Second Year Civil

- Answer all the following questions
- Illustrate your answers with sketches when necessary

Final $1^{\text {st }}$ Term Exam
Date: Sunday 29/12/2019
Subject: Reinforced Concrete 1A
Code: CVE 213
Duration: 3 hours

- No. of questions: 4
- Total Mark: 60 Marks
- Open Book Examination - Handbook of RC Design Aids is only allowed
- $\mathrm{f}_{\mathrm{cu}}=30 \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=\mathbf{4 0 0} \mathrm{MPa}$ for $\Phi \geq 10 \mathrm{~mm}, \mathrm{f}_{\mathrm{y}}=\mathbf{2 4 0} \mathrm{MPa}$ for $\Phi=8 \mathbf{~ m m}, \Phi \leq 25 \mathrm{~mm}$
- Any missing data may be reasonably assumed according to ECP 2016.

Question (1) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

For the shown overhanging beam ($\mathbf{b x t}=\mathbf{3 0 0} * \mathbf{8 0 0}, \mathbf{t}_{\mathbf{s}}=\mathbf{2 0 0 m m}$) in the shown plan of a shed roof under the given slab service loads and own wiegth of beam $=\mathbf{5 . 0} \mathbf{~ k N} / \mathbf{m}^{\prime}$, it is reqired to:.
a- Draw the max. ultimate B.M.D.
b- Design \& draw the critical sections for max. negative B.M \& max. positive B.M.

Question (2) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}
For the overhanging beam given in Question (1), it is required to:
a- Draw the max. ultimate S.F.D. and T.M.D.
b- Design \& draw the critical sections for shear and torsion

Question (3) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

a- Using the first principles for USLS, calculate $\mathbf{M}_{\mathbf{u}}$ and corresponding strain ductility for the following singly-reinforced sections ($\mathbf{b x t}=\mathbf{2 5 0 x 7 0 0} \mathbf{~ m m}, \mathbf{t}_{\mathbf{s}}=\mathbf{1 2 0} \mathbf{m m}$) of a simply supported beam $(\mathbf{L}=\mathbf{6 m})$:
i. R-Section ($\mathbf{a}=\mathbf{2} \mathbf{a m i n}$)
ii. R-Section ($\mathbf{a}=1.2 \mathbf{a b}$)
iii. T-Section $\left(\mathbf{a}=\mathbf{a}_{\text {max }}\right)$
b- Design \& draw a Spiral circular column to resist ultimate load of $\mathbf{P}_{\mathbf{u}}=\mathbf{4 0 0 0} \mathbf{k N}$ (let $\mu=1.5 \%$)

Question (4) [15 Marks] \{ILO's: a1, a2, a3, b1, b2, b3, c1, c2\}

a- Using interaction diagrams, design \& draw a Circular column section to resist a compression force $\mathbf{P u}=$ $4000 \mathrm{kN} \&$ bending moment $\mathrm{M}_{\mathrm{u}}=\mathbf{7 0 0} \mathbf{~ m} . \mathrm{kN}$. ($\mathrm{D}=\mathbf{7 0 0} \mathbf{~ m m}, \mathrm{d}^{`}=\mathbf{5 0} \mathbf{~ m m}, \mathbf{1 . 0} \% \leq \mu \leq \mathbf{2 . 0} \%$).
b- Design \& draw a rectangular section $\left(\mathbf{b}=\mathbf{3 0 0} \mathbf{~ m m}, \mathbf{t}=\mathbf{7 0 0} \mathbf{~ m m}, \mathbf{d}^{`}=\mathbf{5 0} \mathbf{~ m m}\right)$ to resist a tension force $\mathbf{T}_{\mathbf{u}}=\mathbf{6 0 0} \mathrm{kN} \&$ bending moment $\mathbf{M}_{\mathbf{u}}=\mathbf{2 0 0} \mathbf{m} . \mathrm{kN}$.
c- Using interaction diagrams, find the ultimate capacity $\left(\mathbf{P}_{\mathbf{u}}\right)$ of the following column section: $\mathbf{b}=\mathbf{4 0 0}$ $\mathbf{m m}, \mathrm{t}=\mathbf{8 0 0} \mathrm{mm}, \mathrm{d}^{`}=\mathbf{5 0} \mathbf{~ m m}$, top and bottom steel arrangement $\mathrm{A}_{\mathrm{s}}=\mathrm{As}^{`}=\mathbf{1 0} \Phi \mathbf{2 5}, \mathrm{e}=\mathbf{2 0 0} \mathbf{~ m m}$.

Board of Examiners: Prof. Youssef Hashem, Assoc. Prof. Fouad Bakheet, Assoc. Prof. Taha Awad, Assist. Prof. Tarek Sayed \& Assist. Prof. Ahmed Salah

